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Abstract—Interference modeling is central to the analysis of
many interference limited systems. The aggregate interference
due to many individual interferers is often very difficult to
characterize exactly, especially when lognormal shadowing and
path loss is considered. Some results are available for homoge-
neous sources where the individual components have the same
distribution, but many more detailed studies involve heteroge-
neous sources. Hence, in this paper we build upon previous
models for homogeneous sources to develop three general purpose
approaches to modeling the aggregate interference from heteroge-
neous sources which include both shadowing and path-loss. These
models are the inverse gamma, inverse generalized gamma and
extreme value distributions. These models are motivated by prior
work as well as by three distinct interference scenarios relating
to cognitive radio systems, digital television and femtocells. The
models are fitted to these wide ranging examples and numerical
results show good agreement, both for interference and SINR
distributions.

I. INTRODUCTION

Interference modeling is central to the design and analy-
sis of wireless systems, since many systems are inherently
interference limited. In cellular systems, the dominant per-
formance degradation is usually other-cell-interference. In
network MIMO, a complex infrastructure to link base stations
is envisaged to manage such interference. In cognitive radio,
interference is reduced by a variety of methods to acceptable
levels. In spectrum planning, bands of distinct users are
established to satisfy out-of-band interference limits. In these
examples, simulation can be employed to study the interfer-
ence, but simulation can be slow, especially at the system level,
and does not lead to any insights or further analytical progress.
As a result, in this paper we focus on simple statistical models
for the total interference power. The statistical models are
motivated by extensions of the Levy distribution which appears
in certain aggregate interference problems [1]. Also considered
are extreme value distribution models which are motivated by
observations of real systems and by simulation, where it is
observed that a single dominant interferer often accounts for
the majority of the total interference.

Our approach considers heterogenous interfering sources as
the aim is to build a general approach to the problem and avoid
simplifications such as independent identically distributed (iid)
sources. The resulting models allow further analysis, such as
outage probability and rate calculations. In particular, we use

the interference models to derive approximate distributions for
the signal-to-interference-plus-noise-ratio (SINR).

Examples are given for three quite different systems. A
femtocell system based on [2] is considered as well as a
cognitive radio system and a spectrum planning problem where
out-of-band cellular interference to a digital television (DTV)
system is of interest. These examples are used to motivate both
the problem and the solution and numerical results are shown
to evaluate the accuracy of the interference models developed.

The contributions of the paper are as follows:
• We motivate and develop three simple models for the

aggregate interference from heterogeneous sources where
path loss, shadowing and possibly other propagation
effects are considered.

• We show that these models provide excellent fits to both
interference and SINR distributions in three wide ranging
applications of current interest in communications.

• The simplest model, based on an inverse gamma approx-
imation to interference, is shown to provide a remarkably
good approximation to interference with only two param-
eters.

II. SYSTEM MODEL

Consider a receiver in the presence of a random number,
N , of interferers. The total interference power is

I =

N∑
i=1

Ii, (1)

where we are considering the long term interference level,
rather than the fast fading version. The N interferers may
correspond to different types of source, may have different
transmit powers or experience different types of path loss and
shadow fading. However, we do assume a broad framework
for an individual source. The interference power, Ii, is defined
as

Ii = AiLid
−γi
i , (2)

where Ai is a scaling factor that accounts for transmit power,
antenna characteristics, etc. The variable Li represents log-
normal shadowing and is defined by Li = 10Xi/10, where
Xi ∼ N (0, σ2

i ). Path loss is modeled by the d−γii term, where
di is the distance from source to receiver and γi is the path loss
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exponent. All parameters may vary from one user, or group
of users, to another.

III. INTERFERENCE MODELING

In the case of homogenous sources, some results are avail-
able. For example, when Ai = A is a constant, σi = σ is fixed
and γi = γ is fixed, Hong et al [1] derive the distribution of
I in the case where the sources form a Poisson field. This is
equivalent to a limiting version of our model where N →∞.
The work in [1] shows that under these assumptions I has a
stable distribution. Unfortunately, probability density functions
(PDFs) and cumulative distribution functions (CDFs) are only
available for stable distributions in a few special cases. One
useful example is the scenario where γ = 4. Here, the stable
distribution simplifies to the Levy PDF

fI(y) =

√
δ

2π

e−δ/2y

y2/3
, y > 0, (3)

where δ = A
2 π

2θ2Γ(1/2)eσ̃
2/4, θ is the density of interfering

sources and σ̃ = loge(10)σ/10. Hence, the particular scenario
of a Poisson field of homogenous interferers with γ = 4 has
the closed form solution given by (3).

A. The Inverse Gamma Model

Since the Levy PDF holds for homogenous sources with
γ = 4, it is reasonable to expect that a broader family of
distributions, that includes the Levy, would be a sensible model
when γ varies or when homogeneity is relaxed. Hence, we
propose the inverse gamma (IG) family as the Levy is a special
case of IG with shape parameter equal to 1/2. To parameterize
the IG family, consider the gamma variable X , with shape
parameter α and scale parameter β. The IG variable, Y , is
defined by Y = X−1 and has PDF and CDF given by

fY (y) =
e−1/βy

βαΓ(α)yα+1
, y > 0, (4)

FY (y) = 1− γ(α, 1/βy)

Γ(α)
, y > 0, (5)

where γ(·, ·) is the lower, incomplete gamma function.

B. The Inverse Generalized Gamma Model

Continuing with the philosophy of extending the generality
of the distribution to increase the range of scenarios modeled,
we now extend the IG to the inverse generalized gamma (IGG).
If Y has the IG distribution in (4) then Z = Y s is IGG, for
s > 0, with PDF and CDF

fZ(z) =
e−1/(βz)

1/s

sβ(α/s)Γ(α)zα/s+1
, z > 0, (6)

FZ(z) = 1− γ(α, 1/βz1/s)

Γ(α)
, z > 0. (7)

Hence, we have the nested models, Levy, IG and IGG, in order
of increasing generality1.

1Since the models are based on extensions of the classic Levy model for
a certain class of homogenous interferers, it is likely that they will be useful
over a range of scenarios, from purely homogenous to highly heterogenous

C. The Extreme Value Distribution Model

A different approach to interference modeling is given
by the extreme value distribution (EVD). This model was
motivated by simulations of the DTV receiver, see Sec. IV-B.
Here, we observed that the SINR with a single dominant
interferer was often very similar to the SINR with total
interference. Hence, it is interesting to see if a general model
for the maximum interferer, the EVD [3], can also be a useful
model for the total interference. Since interference is a positive
random variable, we adopt the EVD of type 2 [3], defined by
the PDF and CDF,

fW (w) =
k

Ω

(ω
Ω

)−k−1
e−(ωΩ )

−k
, w > 0, (8)

FW (w) = e−(ωΩ )
−k
, w > 0, (9)

where k > 0, Ω > 0 are parameters.

D. Parameter Fitting

Analytical parameter fitting appears to be a complex prob-
lem for heterogeneous sources. When the interferers in (1) are
not iid, the statistics of I are difficult to evaluate, with the
exception of the moments. Unfortunately, the moments of I
are not useful for model fitting as shown by the Levy case
in [1]. For the homogeneous scenario considered in [1], the
Levy distribution is the exact interference distribution. Since
the Levy distribution has no moments, fitting via the moments
is meaningless. In contrast, if I is Levy then I−1 is gamma
which can be fitted simply by moment matching. Hence, the
nature of the interference distributions is long-tailed, where
distributions which fit accurately may not have finite moments.
However, numerical fits are straightforward for functions of the
interference, eg. I−1. Hence, in this paper we use simulated
values of I to perform parameter fitting and leave analytical
methods to later work.

For all three proposed distributions, IG, IGG and EVD, we
employ the simple method of moments techniques from [4]
and [3]. Let m1, m2 be the sample mean and variance of the
simulated I−1 values. For IG, I−1 is modeled as a gamma
variable and the method of moments gives [4, p.357]

β̂ = m2/m1, α̂ = m1/β̂, (10)

where α̂, β̂ are the estimates to be used in (4), (5).
For the IGG, we use the log-moments approach [4, p.395].

Let m1, m2, m3 be the sample mean, variance and central
third moment of − log I . Then, α, β, s in (6) and (7) are
estimated by [4, p.395]

m3

m
2/3
2

=
ψ′′(α̂)

(ψ′(α̂))3/2
, (11)

ŝ =
m3ψ

′(α̂)

m2ψ′′(α̂)
, (12)

β̂ = exp (m1 − ŝψ(α̂)) , (13)

where ψ(·) is the psi function and (11) has to be solved
numerically.
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Finally, for EVD we consider log I which converts the type
2 EVD to a type 1 which has simple moment fitting defined
by [3, p.27]. If m1 and m2 are the sample mean and variance
of log I then

Ω̂ = exp
(
m1 + ψ(1)

√
6m2/π

)
, α̂ = π/

√
6m2, (14)

where Ω̂ and k̂ are the parameter estimates for use in (8) and
(9).

E. SINR Models

Sections III-A to III-C provide three models for the total
interference power. In each case, the corresponding SINR
distribution can be computed as follows. Let P be the long
term power of the desired signal, I be the total interference
in (1) and σ2

n be the power of the noise at the receiver. The
long term SINR is given by

SINR =
P

I + σ2
n

. (15)

Some straightforward manipulations give the SINR CDF as

P (SINR < x) =

∫ ∞
0

FP (x(y + σ2
n))fI(y) dy, (16)

where FP (·) is the CDF of the desired signal power and fI(·)
is the PDF of I . Hence a model for the PDF of I gives the
CDF of the SINR as the single integral in (16). Depending on
the complexity of (16) it may be possible to compute the CDF
in closed form or a single numerical integral may be required.

IV. EXAMPLE SYSTEMS

A. Cognitive Radio

Consider a cognitive radio system with a single primary
user (PU) pair and K clusters of secondary (or cognitive)
users (SUs), each with Nk active transmitters communicating
simultaneously to their respective receivers. The PU-Rx is
located at the origin, with the PU-Tx and the centers of the K
SU clusters uniformly placed within an annulus surrounding
the PU-Rx of inner radius R0 and outer radius R. The SU
transmitters are uniformly located around the cluster center in
a circular region of radius r.

The received signal strength for all links is assumed to
follow the model in (2). For this example system, we assume
a path loss exponent γ common to the PU and all SUs. Thus,
the desired signal at the PU-Rx is P = ApLpd

−γ , where d
is the random distance from the PU-Tx to PU-Rx, and the
constant Ap is determined by the PU transmit power and
antenna gains. Due to their proximity, all Nk SUs within a
cluster are assumed to undergo common lognormal shadowing.
Thus, the interference to the PU-Rx from each of the SU-Tx
is given by

Ik,i = AsLkd
−γ
k,i , (17)

where k ∈ {1, 2, . . . ,K} and i ∈ {1, 2, . . . , Nk} denote
the cluster index and SU-Tx index, respectively. In (17), As,
assumed to be equal for all SUs, is determined by the SU
transmit power and antenna gains and dk,i is the distance from

SU-Tx i in cluster k to the PU-Rx. All links are assumed to
be iid so that spatial correlation is ignored.

The scaling parameters Ap and As are chosen to satisfy
the SNR criteria for the PU-Tx to PU-Rx and SU-Tx to SU-
Rx links, respectively. That is, Ap and As are chosen so that
the corresponding SNRs exceed a desired target, SNRT , with
a desired target probability.

Denoting the Gaussian noise at the PU-Rx by CN (0, σ2
p),

using (15), the PU-Rx SINR is given by

SINRp =
P

K∑
k=1

Nk∑
i=1

Ik,i + σ2
p

. (18)

B. Adjacent Band Operation of DTV and Cellular Systems
In this scenario, we study the interference from a cellular

user equipment (UE) to a DTV receiver in an adjacent channel
in the 700 MHz band. The close proximity in frequency
for these two different systems would result in out-of-band
emissions from one system interfering with the desired signal
of the other system. Fig. 1 shows the Asia Pacific Telecom-
munity (APT) digital dividend band and potential out-of-band
emissions from cellular system UEs in the adjacent DTV
band [5]. A guard band between the frequency bands of the
two services is intended to limit the extent of out-of-band
interference; agreed values of the guardband are shown in
Fig. 1 [5]. The system model is illustrated in Fig. 2. DTV

Fig. 1. APT digital dividend band and UE out-of-band emissions.

receivers are uniformly distributed in the coverage area of a
DTV transmitter. The DTV coverage area is modeled as an
annulus with inner radius R0 and outer radius R. The UEs are
randomly distributed in an annulus around the DTV receiver
with inner radius R1 and outer radius R2. The active number
of UEs around a DTV receiver is a Poisson random variable
with a mean density of θ.

The received signal strength for the DTV-Tx to DTV-Rx link
is assumed to have the same form as (2), where the constant,
Ai, is determined by the DTV transmit power and antenna
gains.

The interference to the DTV-Rx from each of the UEs is also
consistent with (2) where Ai is a scaling factor that accounts
for the UE transmit power and antenna characteristics. Due to
the near-far problem in the uplink of cellular systems, power
control has been applied to the UEs and is incorporated in the
Ai factor. Li and γi could take a number of possible values
dependent on the distance between the UE and DTV-Rx.
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An out-of-band attenuation factor, g, is applied to the total
UE signal power to calculate the interfering signal power for
a DTV-Rx. The out-of-band attenuation factor is dependent on
the size of the guard band and the channel bandwidths of the
UE and DTV-Rx.

Denoting the Gaussian noise at the DTV-Rx by
N (0, σ2

DTV), the SINR at the DTV-Rx is given by

SINRDTV =
P

g
N∑
i=1

Ii + σ2
DTV

. (19)

Fig. 2. DTV and Cellular service system diagram.

C. Femtocell

Femtocells – low power, 3rd party miniature base stations
– are rapidly being added to cellular networks in an ad-
hoc fashion, to enhance their capacity and coverage [6].
By 2014, there will be as many as 50 million femtocells
installed worldwide, which will be at least 20 times more than
the number of traditional high power base stations [7]. The
proposed SINR framework can significantly ease the analysis
of even complex models for such two-tier networks.

Although recent progress has been made in finding tractable
and near-exact expressions for downlink SINR in such net-
works [8], [9], these results generally assume Rayleigh fad-
ing (and no shadowing), no noise, and other simplifications,
whereas the framework proposed here provides easily com-
putable approximations for a broader set of system parameters.
Here, for example, we include per-tier lognormal shadowing,
a wall loss χ (as appropriate), noise and the possibility of
different path loss exponents for the two tiers. We consider
the SINR statistics of the macro user, where the macro user
is outdoors and the femto user is indoors.

We consider a macrocell user at the origin (without loss
of generality) and assume the macrocell BSs follow a 2-D
Poisson Point Process (PPP) Φm with intensity λm, and the

femtocells are drawn from a 2-D PPP Φf with (usually higher)
intensity λf . We emphasize that although we use the PPP here
for ease of exposition, one could just as easily use a hexagonal
grid or another preferred spatial model for the base station
locations. It is generally agreed that a PPP is a good model
for femtocells (which are expected to be nearly iid in space). If
the user connects to a macro BS B0 which is at some location
x, the SINR can be modeled as

SINRm =
PmL0|x|−γm∑

i∈Φm/B0

PmLi|Ym,i|−γm +
∑
i∈Φf

PfχLi|Yf,i|−γf + σ2
m

,

(20)
where subscripts m and f refer to macro and femto-specific
values, Li is a lognormal shadowing value, and Y denotes the
locations of various interfering base stations. In (20), Pm and
Pf denote transmit powers, γf and γm denote the path loss
exponents and σ2

m is the noise power. The first two terms in
the denominator of (20) represent the aggregate interference,
which are analyzed in Section V.

The SINR CDF (i.e. the outage probability) of a macrocell
user with open access is then

Fm(T ) = qmEx[P[SINRm(x) ≤ T ]] (21)

where qm is the probability that a randomly located user in the
network receives the strongest average signal from a macrocell
BS. This association probability can be computed, with the
simplification that γf = γm = γ, to give [9]

qm =
λmP

2
γ
m

λfP
2
γ

f + λmP
2
γ
m

. (22)

The CDF of the SINRm numerator can be derived using the
procedure of Hanif et al [10] with the key difference that
the distance CDF, i.e. FX(x), is now modified because the
statistics for macrocells and femtocells affect one another. For
example, in open access, densely deployed femtocells decrease
the average distance of both a femtocell and macrocell connec-
tion, since femtocells look increasingly attractive compared to
a more distant macrocell BS. Adapting Lemma 2 in [9], one
can obtain the CDF for the distance to a macrocell in open
access as

Fm(x) = 1− 2πλm
qm

∫ ∞
x

r exp
(
−π
[
λmr

2 + λf P̂
2
γf r

2
γ̂

])
dr,

(23)
where P̂ = Pf/Pm and γ̂ = γf/γm. Note that the development
in (20)-(23) for a macro user can also be reproduced for
a femto user. The SINR CDF can be computed from (16)
by employing the relevant interference PDF for IG, IGG or
EVD and using the CDF of the desired signal power, which
is obtained by using (23) in the procedure of Hanif et al [10].

V. SIMULATION RESULTS

In order to evaluate the accuracy of the models, we present
simulation results for the CDFs of total interference, I , and
SINR for the three example systems considered in Sections
IV-A, IV-B and IV-C. For interference, we also plot the
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empirical CDF of I and compare it to the fitted CDFs of
the IG, IGG and EVD distributions given by (5), (7) and (9),
respectively. For SINR, we present the CDFs of the resulting
SINR from (16), where the interference pdf fI(·) is obtained
from (4), (6) and (8). In the CR and DTV models the CDF,
Fp(·), of the desired signal in the form of (2) is computed
analytically using (6) in [10]. Note that SINR CDFs for the
femtocell application are not included for reasons of space.

Figures 3 and 4 present the CDFs for the CR cluster system
described in IV-A. Specifically, we consider a PU coverage
radius of R = 1 km, with K = 20 clusters of Nk = 5 SUs
each, and SU coverage radius of r = 20 m. The PU protection
radius is R0 = 10 m. The lognormal shadowing and distance
attenuation follow the Hata model [11] where the combined
path loss in dB is given by

PL = 124 + 35 log10 d+X, (24)

where X is a lognormal variable with σ = 8 dB and d is
in kms. The constants Ap and As are chosen so that the
target, SNRT = 10 dB, is exceeded with a probability of 95%,
assuming PU and SU receive antenna gains of 10 dB and 0
dB, respectively. All three models fit the interference data quite
well with the EVD the least accurate. The IG and IGG are very
similar with the IG a better fit in the lower tail. The accuracy of
these models is tested in Fig. 4, where they are used for SINR
outage calculations. Here, all three models perform very well.
It is surprising that such a simple model as the IG performs
so well over the whole range for both interference and SINR.
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Fig. 3. CDFs of I for the CR model.

Figures 5 and 6 show the corresponding results for the DTV
model described in Section IV-B. The parameters used are
consistent with those agreed by the Correspondence group of
the APT Wireless Group (AWG) [12]. A DVB-T system with
a channel bandwidth of 8 MHz and outer coverage radius of
R = 16 km, inner radius of R0 = 1 km was considered
as the DTV system. A UE channel bandwidth of 5 MHz was
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Fig. 4. CDFs of SINR for the CR model.

considered. The Adjacent Channel Leakage Ratio (ACLR) and
Adjacent Channel Selectivity (ACS) for the IMT UE and DTV-
Rx were obtained from [12]. The outer radius of UE interferers
is R2 = 1.5 km and a DTV-Rx protection radius of R1 = 10
m has been used. The lognormal shadowing and path loss for
the UE to DTV-Rx link and UE to BS link follow the free
space and modified Hata model in [11]. The path loss model
used for the DTV-Tx to DTV-Rx link is adapted from the
empirical propagation curves in [13].

An out-of-band emission limit of -30 dBm/MHz has been
used for the UEs. Fig. 6 illustrates that there is a nominal
effect on the DTV-Rx signal from out-of-band emissions of a
5 MHz UE. Table I includes the simulation results on the effect
of UE out-of-band interference on DTV coverage. A smaller
UE density has been used for larger channel bandwidths since
each UE would be using more frequency resources from a
fixed spectrum band. The DTV-Rx SNR threshold of 20 dB
was agreed by the AWG Correspondence group. Without any
interference, the coverage area loss was 1.20%. Column 5 in
Table I includes the coverage area loss in addition to these
1.20% of locations that were already in outage. These results
show that the effect of UE out-of-band interference on DTV
coverage is relatively small. Results for the DTV system are
almost identical to those in Figs. 3 and 4. Again, IG and
IGG are better models then EVD and IG is impressive in its
accuracy for a two parameter model.

TABLE I
INTERFERENCE ANALYSIS RESULTS FOR DTV COVERAGE

UE UE density CDF Value Overall Area Coverage
Bandwidth (UEs/km2) @ 20dB SINR Coverage Area Loss

5 MHz 13 1.72% 98.28% 0.52%
10 MHz 13/8 1.23% 98.77% 0.03%
15 MHz 13/8 1.30% 98.70% 0.10%

Figure 7 shows the interference results for the open access
femtocell model described in Section IV-C. Specifically, we
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consider an open access system with a macro cell radius of
R = 1 km, wall penetration loss χ = 6 dB, and a normalised
femtocell PPP intensity of λf/λm = 5. The path loss exponent
was set to γ = 3.5 for both the femto and macro users.
Figure 7 again verifies the excellent fit offered by the models,
especially IG and IGG.

Although the IGG model has an extra parameter compared
to IG, the fits in Figs. 3, 5 and 7 are not, subjectively, better
than IG. This is because the IGG also fits the third moment
and is therefore more driven by the tails of the distribution.
Hence, the IG and IGG fits are different in nature and we do
not necessarily see an improvement in the use of IGG.

VI. CONCLUSIONS

Analyzing interference and SINR is a complex problem
when the interfering sources are heterogeneous. Hence, we
have proposed three models, the IG, IGG and EVD distribu-
tions, for interference which can also be used in SINR calcula-
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Fig. 7. CDFs of I for the Open Access Femtocell model.

tions. These models have been motivated and applied to three
widely varying communication systems where heterogeneous
interference is encountered. In all cases, the EVD model was
least effective and the IG/IGG models were very accurate. Due
to its simplicity as a two parameter model, the IG model is an
extremely attractive approach for interference modeling and
has proven to be remarkably accurate.
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